

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF MECHANICAL ENGINEERING

FIRST SEMESTER EXAMINATIONS

2020/2021 ACADEMIC SESSION

COURSE:

GNE 255 - Applied Mechanics (3 Units)

CLASS:

200 Level General Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer Question 1 and ANY other FOUR (4). Neat work is important to AVOID

oversight. All Questions carry equal marks.

Date: March, 2021

Question 1(Introduction)

(a)(i) What is Applied Mechanics? (ii) With the aid of sketch, show the classification of Engineering Mechanics

(iii) Explain the concept of *particles* and *Rigid bodies* with examples

[5 Marks]

HOD'S SIGNATURE

(b) (i) Differentiate between fundamental and derived unit with necessary examples. (ii) Briefly explain any two (2) systems of units. [4 Marks]

(c) (i) Converts 5.5 km/h to m/s. Then, how many ft/s is this? (ii) Convert the quantities 320 lb.s and 54 slug/ft³ to appropriate SI units? [Given that: 1 lb \approx 4.448 N; 1 slug \approx 14.59 kg; 1 ft \approx 0.3048 m] [3 Marks]

Question 2 (2-D Force and Force systems)

(a) Define the following: (i) rectangular coordinate (ii) force systems (iii) Concurrent force system (iv) parallelogram law of forces

[4 Marks]

(b) Determine the magnitude and direction of the forces shown in fig. Q2(b).

[5 Marks]

(c) A boat is to be pulled onto the shore using two ropes. Determine the magnitudes of forces P and T acting in each rope in order to develop a resultant force F₁, directed along the keel axis aa as shown in fig.Q2(c).
 Given that Θ, Θ₁, F₁ are 40°, 30° and 80 N respectively.

Fig. Q2(b)

Fig. Q2(c)

Question 3 (3-D Force Systems)

(a) (i) Prove that $\vec{F} = F\lambda$ (ii) prove that $\cos^2_{\theta_x} + \cos^2_{\theta_y} + \cos^2_{\theta_z} = 1$

[3 Marks]

(b) Determine the magnitude and the coordinate direction angles of the resultant force acting on the ring in fig.Q3(b). [4 Marks]

Fig. Q3(b)

Fig. Q3(c)

(c) Knowing that the tension is 510 lb in cable AB and 425 lb in cable AC, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables in fig.Q3(c). [5 Marks]

Question 4 (Force and Couple Moment)

- (a) (i) Define couple, then give any three (3) engineering application of couple systems (ii) What is an equivalent couple? (iii) State the Vargmon's principle [5 Marks]
- (b) Determine the resultant couple moment of the three couple acting on the plates in Fig. Q4(a)
- (c) The wire AE is stretched between the corners A and E of a bent plate shown in Fig. Q4(b). Knowing that the tension in the wire is 435 N, determine the moment about O of the force exerted by the wire on corner A.

Question 5 (Friction)

- (a) (i) What is friction? (ii) In engineering applications, friction is both desirable and undesirable, explain? (iii) State any four (4) laws of static friction
- (b) An effort of 1500 N acting parallel to the plane is required to just move a certain body up an inclined plane of angle 12%. If the angle of inclination is increased to 15%, then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.
- (c) A body resting on a rough horizontal plane required a pull of 180 N inclined at 30° to the plane just to move it. It was found that a push of 220 N inclined at 300 to the plane just to move the body. Determine the weight of the body and the coefficient of friction. [4 Marks]

Question 6 (Plane motions, Newton's Law of Motion, Energy and Momentum analysis)

- (a) (i) Define a plane motion (ii) Tabulate the relationship between rectilinear and eurvilinear plane motion [3
- (b) A taxi car is travelling at 54 km/hr when the traffic light 50 m ahead turns yellow. Determine the required constant deceleration of the car and the time needed to stop the ear at the light.

[2 Marks]

(c) The angular displacement of a body is a function of time and is given by the equation

$$0 = 10 + 3t + 6t^2$$

Where t is in seconds: Determine the angular velocity, displacement and acceleration when t= 5seconds.

[2 1/2 Marks]

(d) A 3-kg block shown in fig. Q6(a) rests on top of a 2-kg block supported by but not attached to a spring of constant 40 N/m. The upper block is suddenly removed. Determine (a) the maximum speed reached by the 2-[4 1/2 Marks] kg block, (b) the maximum height reached by the 2-kg block.

Question 7 (Centroids and First and Second Moments of Area)

(a) (i) State parallel axis theorem (ii) What is centroid?

[2 Marks]

[3 Marks]

(b) Locate the centroid (\bar{y}) of the cross-sectional area of the beam shown Fig. Q7(a) (c) Determine the distance measured from the N axis to the centroid of the area of the triangle shown in Fig. Q7(b).

[3 Marks] (d) Determine the moment of inertia of the cross-sectional area of the channel shown in Fig. Q7(c) with respect [4 Marks] to the x axis

Fig. Q6(a)

150 mm | 150 mm 50 mm 300 mm 25 mm 25 mm Fig. Q7(a)

50 mm 50 mm 300 mm 50 mm -200 mm

Fig. Q7(c)